Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Focus (Am Psychiatr Publ) ; 21(4): 444-452, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38694997

RESUMEN

Objectives: Persistent functional impairment is common in bipolar disorder (BD) and is influenced by a number of demographic, clinical, and cognitive features. The goal of this project was to estimate and compare the influence of key factors on community function in multiple cohorts of well-characterized samples of individuals with BD. Methods: Thirteen cohorts from 7 countries included n = 5882 individuals with BD across multiple sites. The statistical approach consisted of a systematic uniform application of analyses across sites. Each site performed a logistic regression analysis with empirically derived "higher versus lower function" as the dependent variable and selected clinical and demographic variables as predictors. Results: We found high rates of functional impairment, ranging from 41 to 75%. Lower community functioning was associated with depressive symptoms in 10 of 12 of the cohorts that included this variable in the analysis. Lower levels of education, a greater number of prior mood episodes, the presence of a comorbid substance use disorder, and a greater total number of psychotropic medications were also associated with low functioning. Conclusions: The bipolar clinical research community is poised to work together to characterize the multi-dimensional contributors to impairment and address the barriers that impede patients' complete recovery. We must also identify the core features which enable many to thrive and live successfully with BD. A large-scale, worldwide, prospective longitudinal study focused squarely on BD and its heterogeneous presentations will serve as a platform for discovery and promote major advances toward optimizing outcomes for every individual with this illness.Reprinted from Bipolar Disord 2022; 24:709-719, with permission from John Wiley and Sons. Copyright © 2022.

2.
Front Neurosci ; 16: 841816, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35368272

RESUMEN

Misophonia is a disorder of decreased tolerance to specific sounds or their associated stimuli that has been characterized using different language and methodologies. The absence of a common understanding or foundational definition of misophonia hinders progress in research to understand the disorder and develop effective treatments for individuals suffering from misophonia. From June 2020 through January 2021, the authors conducted a study to determine whether a committee of experts with diverse expertise related to misophonia could develop a consensus definition of misophonia. An expert committee used a modified Delphi method to evaluate candidate definitional statements that were identified through a systematic review of the published literature. Over four rounds of iterative voting, revision, and exclusion, the committee made decisions to include, exclude, or revise these statements in the definition based on the currently available scientific and clinical evidence. A definitional statement was included in the final definition only after reaching consensus at 80% or more of the committee agreeing with its premise and phrasing. The results of this rigorous consensus-building process were compiled into a final definition of misophonia that is presented here. This definition will serve as an important step to bring cohesion to the growing field of researchers and clinicians who seek to better understand and support individuals experiencing misophonia.

3.
Bipolar Disord ; 24(7): 709-719, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35322518

RESUMEN

OBJECTIVES: Persistent functional impairment is common in bipolar disorder (BD) and is influenced by a number of demographic, clinical, and cognitive features. The goal of this project was to estimate and compare the influence of key factors on community function in multiple cohorts of well-characterized samples of individuals with BD. METHODS: Thirteen cohorts from 7 countries included n = 5882 individuals with BD across multiple sites. The statistical approach consisted of a systematic uniform application of analyses across sites. Each site performed a logistic regression analysis with empirically derived "higher versus lower function" as the dependent variable and selected clinical and demographic variables as predictors. RESULTS: We found high rates of functional impairment, ranging from 41 to 75%. Lower community functioning was associated with depressive symptoms in 10 of 12 of the cohorts that included this variable in the analysis. Lower levels of education, a greater number of prior mood episodes, the presence of a comorbid substance use disorder, and a greater total number of psychotropic medications were also associated with low functioning. CONCLUSIONS: The bipolar clinical research community is poised to work together to characterize the multi-dimensional contributors to impairment and address the barriers that impede patients' complete recovery. We must also identify the core features which enable many to thrive and live successfully with BD. A large-scale, worldwide, prospective longitudinal study focused squarely on BD and its heterogeneous presentations will serve as a platform for discovery and promote major advances toward optimizing outcomes for every individual with this illness.


Asunto(s)
Trastorno Bipolar , Humanos , Trastorno Bipolar/complicaciones , Trastorno Bipolar/epidemiología , Trastorno Bipolar/diagnóstico , Estudios Prospectivos , Estudios Longitudinales , Afecto , Estudios de Cohortes
5.
J Neurosci ; 40(1): 101-106, 2020 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-31896564

RESUMEN

On the 50th anniversary of the Society for Neuroscience, we reflect on the remarkable progress that the field has made in understanding the nervous system, and look forward to the contributions of the next 50 years. We predict a substantial acceleration of our understanding of the nervous system that will drive the development of new therapeutic strategies to treat diseases over the course of the next five decades. We also see neuroscience at the nexus of many societal topics beyond medicine, including education, consumerism, and the justice system. In combination, advances made by basic, translational, and clinical neuroscience research in the next 50 years have great potential for lasting improvements in human health, the economy, and society.


Asunto(s)
Neurociencias/tendencias , Animales , Conducta Animal , Predicción , Edición Génica , Historia del Siglo XX , Historia del Siglo XXI , Humanos , Comunicación Interdisciplinaria , Trastornos Mentales/diagnóstico , Trastornos Mentales/genética , Trastornos Mentales/terapia , Red Nerviosa/fisiología , Enfermedades del Sistema Nervioso/genética , Enfermedades del Sistema Nervioso/terapia , Neurogénesis , Neurociencias/historia , Organoides , Investigación , Cambio Social
6.
Elife ; 82019 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-31333190

RESUMEN

The light environment greatly impacts human alertness, mood, and cognition by both acute regulation of physiology and indirect alignment of circadian rhythms. These processes require the melanopsin-expressing intrinsically photosensitive retinal ganglion cells (ipRGCs), but the relevant downstream brain areas involved remain elusive. ipRGCs project widely in the brain, including to the central circadian pacemaker, the suprachiasmatic nucleus (SCN). Here we show that body temperature and sleep responses to acute light exposure are absent after genetic ablation of all ipRGCs except a subpopulation that projects to the SCN. Furthermore, by chemogenetic activation of the ipRGCs that avoid the SCN, we show that these cells are sufficient for acute changes in body temperature. Our results challenge the idea that the SCN is a major relay for the acute effects of light on non-image forming behaviors and identify the sensory cells that initiate light's profound effects on body temperature and sleep.


Asunto(s)
Ritmo Circadiano/genética , Células Ganglionares de la Retina/metabolismo , Opsinas de Bastones/genética , Núcleo Supraquiasmático/metabolismo , Animales , Temperatura Corporal/genética , Encéfalo/metabolismo , Encéfalo/fisiología , Humanos , Ratones , Células Fotorreceptoras/metabolismo , Células Ganglionares de la Retina/fisiología , Opsinas de Bastones/metabolismo , Sueño/genética , Sueño/fisiología , Vías Visuales/metabolismo
7.
Alzheimers Dement ; 15(1): 42-54, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30314799

RESUMEN

Neurodegenerative diseases encompass a range of diagnoses, such as Alzheimer's disease and Parkinson's disease. Despite decades of advancements in understanding the neurobiology of individual diseases, this class has few disease-modifying therapeutics and a paucity of biomarkers for diagnosis or progression. However, tau protein aggregation has emerged as a potential unifying factor across several neurodegenerative diseases, which has prompted a rapid growth in tau-related funding. In spite of this growth, research funding in this area is not in line with the immense magnitude of disease burden, and drug discovery and clinical research remain underfunded. Coordinated, collaborative efforts are key to making an impact, which can and should be led by the major funding bodies within the tau space. Here we describe the development and analysis of a tau-focused neurodegeneration funding database, which captures data from 2040 grants from 2006 to 2016. This database was developed as a public resource to allow funders, researchers, and policy makers to better understand tau funding patterns and to identify key funders and potential collaborations. This database can be used in conjunction with other neurodegenerative disease databases, such as the International Alzheimer's Disease Research Portfolio to gain specific insight into tau-research funding. Over the study period, overall tau funding rose dramatically; however, changes in capital distribution also changed. Specifically, the field experienced a strong bias toward funding tau in the context of Alzheimer's disease, while at the same time generally decreasing the overall proportion of funding for basic research, treatment development, and evaluation. As funding organizations look forward, this resource can both inform future funding strategies and priority areas and identify potential collaborative efforts with complementary funding organizations.


Asunto(s)
Organización de la Financiación/economía , Apoyo a la Investigación como Asunto , Investigación/tendencias , Tauopatías , Enfermedad de Alzheimer/tratamiento farmacológico , Biomarcadores , Bases de Datos Factuales , Humanos , Enfermedad de Parkinson/tratamiento farmacológico
8.
eNeuro ; 3(6)2016.
Artículo en Inglés | MEDLINE | ID: mdl-28144620

RESUMEN

As a neuroscientist working in the Department of Justice for the past year, I observed that many of the challenges of crime and justice have solutions rooted in our understanding of neuroscience. However, the neuroscience community seems absent from conversations regarding these solutions.


Asunto(s)
Derecho Penal , Neurociencias , Políticas , Encéfalo/efectos de los fármacos , Encéfalo/fisiopatología , Criminales/legislación & jurisprudencia , Humanos , Trastornos Mentales/fisiopatología , Estados Unidos , Violencia/legislación & jurisprudencia
9.
Invest Ophthalmol Vis Sci ; 56(3): 1842-9, 2015 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-25670495

RESUMEN

PURPOSE: To better understand how photoreceptors and their circuits support luminance-dependent spatial visual behavior. METHODS: Grating thresholds for optokinetic tracking were measured under defined luminance conditions in mice with genetic alterations of photoreceptor activity. RESULTS: The luminance conditions that enable cone- and rod-mediated behavior, and the luminance range over which rod and cone functions overlap, were characterized. The AII amacrine pathway was found to support low-resolution and high-contrast function, with the rod-cone pathway supporting high-resolution and low-contrast function. Rods alone were also shown to be capable of driving cone-like spatial visual function, but only when cones were genetically maintained in a physiological dark state. CONCLUSIONS: The study defined how luminance signals drive rod- and cone-mediated spatial visual behavior and revealed new and unexpected contributions for rods that depend on an interaction between cone and rod systems.


Asunto(s)
Células Fotorreceptoras de Vertebrados/fisiología , Conducta Espacial/fisiología , Navegación Espacial/fisiología , Animales , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Estimulación Luminosa
10.
Nature ; 491(7425): 594-8, 2012 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-23151476

RESUMEN

The daily solar cycle allows organisms to synchronize their circadian rhythms and sleep-wake cycles to the correct temporal niche. Changes in day-length, shift-work, and transmeridian travel lead to mood alterations and cognitive function deficits. Sleep deprivation and circadian disruption underlie mood and cognitive disorders associated with irregular light schedules. Whether irregular light schedules directly affect mood and cognitive functions in the context of normal sleep and circadian rhythms remains unclear. Here we show, using an aberrant light cycle that neither changes the amount and architecture of sleep nor causes changes in the circadian timing system, that light directly regulates mood-related behaviours and cognitive functions in mice. Animals exposed to the aberrant light cycle maintain daily corticosterone rhythms, but the overall levels of corticosterone are increased. Despite normal circadian and sleep structures, these animals show increased depression-like behaviours and impaired hippocampal long-term potentiation and learning. Administration of the antidepressant drugs fluoxetine or desipramine restores learning in mice exposed to the aberrant light cycle, suggesting that the mood deficit precedes the learning impairments. To determine the retinal circuits underlying this impairment of mood and learning, we examined the behavioural consequences of this light cycle in animals that lack intrinsically photosensitive retinal ganglion cells. In these animals, the aberrant light cycle does not impair mood and learning, despite the presence of the conventional retinal ganglion cells and the ability of these animals to detect light for image formation. These findings demonstrate the ability of light to influence cognitive and mood functions directly through intrinsically photosensitive retinal ganglion cells.


Asunto(s)
Afecto/efectos de la radiación , Aprendizaje/efectos de la radiación , Luz , Células Ganglionares de la Retina/metabolismo , Células Ganglionares de la Retina/efectos de la radiación , Opsinas de Bastones , Afecto/efectos de los fármacos , Afecto/fisiología , Animales , Antidepresivos/farmacología , Regulación de la Temperatura Corporal/fisiología , Regulación de la Temperatura Corporal/efectos de la radiación , Ritmo Circadiano/fisiología , Cognición/efectos de los fármacos , Cognición/fisiología , Cognición/efectos de la radiación , Corticosterona/metabolismo , Depresión/etiología , Depresión/fisiopatología , Desipramina/farmacología , Fluoxetina/farmacología , Aprendizaje/efectos de los fármacos , Aprendizaje/fisiología , Potenciación a Largo Plazo/efectos de los fármacos , Masculino , Memoria/fisiología , Memoria/efectos de la radiación , Ratones , Fotoperiodo , Células Ganglionares de la Retina/efectos de los fármacos , Opsinas de Bastones/análisis , Sueño/fisiología , Vigilia/fisiología
11.
J Vis Exp ; (48)2011 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-21339719

RESUMEN

Circadian rhythms are physiological functions that cycle over a period of approximately 24 hours (circadian- circa: approximate and diem: day). They are responsible for timing our sleep/wake cycles and hormone secretion. Since this timing is not precisely 24-hours, it is synchronized to the solar day by light input. This is accomplished via photic input from the retina to the suprachiasmatic nucleus (SCN) which serves as the master pacemaker synchronizing peripheral clocks in other regions of the brain and peripheral tissues to the environmental light dark cycle. The alignment of rhythms to this environmental light dark cycle organizes particular physiological events to the correct temporal niche, which is crucial for survival. For example, mice sleep during the day and are active at night. This ability to consolidate activity to either the light or dark portion of the day is referred to as circadian photoentrainment and requires light input to the circadian clock. Activity of mice at night is robust particularly in the presence of a running wheel. Measuring this behavior is a minimally invasive method that can be used to evaluate the functionality of the circadian system as well as light input to this system. Methods that will covered here are used to examine the circadian clock, light input to this system, as well as the direct influence of light on wheel running behavior.


Asunto(s)
Ritmo Circadiano/fisiología , Actividad Motora/fisiología , Animales , Luz , Ratones , Retina/fisiología , Núcleo Supraquiasmático/fisiología
12.
Nat Neurosci ; 13(9): 1107-12, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20711184

RESUMEN

In mammals, synchronization of the circadian pacemaker in the hypothalamus is achieved through direct input from the eyes conveyed by intrinsically photosensitive retinal ganglion cells (ipRGCs). Circadian photoentrainment can be maintained by rod and cone photoreceptors, but their functional contributions and their retinal circuits that impinge on ipRGCs are not well understood. Using mice that lack functional rods or in which rods are the only functional photoreceptors, we found that rods were solely responsible for photoentrainment at scotopic light intensities. Rods were also capable of driving circadian photoentrainment at photopic intensities at which they were incapable of supporting a visually guided behavior. Using mice in which cone photoreceptors were ablated, we found that rods signal through cones at high light intensities, but not at low light intensities. Thus, rods use two distinct retinal circuits to drive ipRGC function to support circadian photoentrainment across a wide range of light intensities.


Asunto(s)
Ritmo Circadiano/fisiología , Células Fotorreceptoras Retinianas Bastones/fisiología , Animales , Canales Catiónicos Regulados por Nucleótidos Cíclicos/deficiencia , Canales Catiónicos Regulados por Nucleótidos Cíclicos/genética , Canales Catiónicos Regulados por Nucleótidos Cíclicos/metabolismo , Subunidades alfa de la Proteína de Unión al GTP/deficiencia , Subunidades alfa de la Proteína de Unión al GTP/genética , Subunidades alfa de la Proteína de Unión al GTP/metabolismo , Técnicas In Vitro , Masculino , Potenciales de la Membrana , Ratones , Ratones Noqueados , Ratones Transgénicos , Actividad Motora/fisiología , Vías Nerviosas/fisiología , Neuronas/fisiología , Técnicas de Placa-Clamp , Estimulación Luminosa , Retina/fisiología , Células Bipolares de la Retina/fisiología , Células Fotorreceptoras Retinianas Conos/fisiología , Opsinas de Bastones/deficiencia , Opsinas de Bastones/genética , Opsinas de Bastones/metabolismo , Transducina/deficiencia , Transducina/genética , Transducina/metabolismo , Percepción Visual/fisiología
13.
Neuron ; 66(3): 417-28, 2010 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-20471354

RESUMEN

Photoreceptive, melanopsin-expressing retinal ganglion cells (mRGCs) encode ambient light (irradiance) for the circadian clock, the pupillomotor system, and other influential behavioral/physiological responses. mRGCs are activated both by their intrinsic phototransduction cascade and by the rods and cones. However, the individual contribution of each photoreceptor class to irradiance responses remains unclear. We address this deficit using mice expressing human red cone opsin, in which rod-, cone-, and melanopsin-dependent responses can be identified by their distinct spectral sensitivity. Our data reveal an unexpectedly important role for rods. These photoreceptors define circadian responses at very dim "scotopic" light levels but also at irradiances at which pattern vision relies heavily on cones. By contrast, cone input to irradiance responses dissipates following light adaptation to the extent that these receptors make a very limited contribution to circadian and pupillary light responses under these conditions. Our data provide new insight into retinal circuitry upstream of mRGCs and optimal stimuli for eliciting irradiance responses.


Asunto(s)
Fototransducción/fisiología , Luz , Células Fotorreceptoras Retinianas Conos/fisiología , Células Fotorreceptoras Retinianas Bastones/fisiología , Opsinas de Bastones/fisiología , Visión Ocular/fisiología , Análisis de Varianza , Animales , Ritmo Circadiano/fisiología , Humanos , Ratones , Ratones Transgénicos , Retina/fisiología , Factores de Tiempo
15.
Nature ; 453(7191): 102-5, 2008 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-18432195

RESUMEN

Rod and cone photoreceptors detect light and relay this information through a multisynaptic pathway to the brain by means of retinal ganglion cells (RGCs). These retinal outputs support not only pattern vision but also non-image-forming (NIF) functions, which include circadian photoentrainment and pupillary light reflex (PLR). In mammals, NIF functions are mediated by rods, cones and the melanopsin-containing intrinsically photosensitive retinal ganglion cells (ipRGCs). Rod-cone photoreceptors and ipRGCs are complementary in signalling light intensity for NIF functions. The ipRGCs, in addition to being directly photosensitive, also receive synaptic input from rod-cone networks. To determine how the ipRGCs relay rod-cone light information for both image-forming and non-image-forming functions, we genetically ablated ipRGCs in mice. Here we show that animals lacking ipRGCs retain pattern vision but have deficits in both PLR and circadian photoentrainment that are more extensive than those observed in melanopsin knockouts. The defects in PLR and photoentrainment resemble those observed in animals that lack phototransduction in all three photoreceptor classes. These results indicate that light signals for irradiance detection are dissociated from pattern vision at the retinal ganglion cell level, and animals that cannot detect light for NIF functions are still capable of image formation.


Asunto(s)
Células Fotorreceptoras Retinianas Conos/metabolismo , Células Ganglionares de la Retina/citología , Células Ganglionares de la Retina/metabolismo , Células Fotorreceptoras Retinianas Bastones/metabolismo , Opsinas de Bastones/metabolismo , Visión Ocular/fisiología , Animales , Encéfalo/citología , Encéfalo/metabolismo , Ritmo Circadiano/fisiología , Ritmo Circadiano/efectos de la radiación , Señales (Psicología) , Electrorretinografía , Luz , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Actividad Motora/fisiología , Pupila/fisiología , Pupila/efectos de la radiación , Reflejo/fisiología , Reflejo/efectos de la radiación , Opsinas de Bastones/deficiencia , Opsinas de Bastones/genética , Visión Ocular/efectos de la radiación , Agudeza Visual/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...